Quantum Hope

Featured

.

Oh, no, not THAT word!

Put the word “quantum” in a title or sentence and people get nervous.  Perhaps their eyes glaze over and they hope that it will go away.  Some stop reading and skip to another article.  Others are so disconcerted by the mere appearance of the term they can’t read another word and turn on their TVs, frantically looking for reruns of The Simpsons, or Family Guy, or better yet, Oprah.  Comfort food delivered by cable. Having placed “quantum” in both the title and the first sentence, however, those folks won’t have gotten this far.

So if you are still reading, you are among a small minority who are surprisingly brave and tenacious.  For most of you, however, I still need to allay one other fear: math.  Take a deep breath.  No math.  Please, though, don’t turn off your brain.  I’m going to suggest something that is indeed within the realm of quantum theory, but from a perspective few quantum physicists would entertain.

Consider this a treat.

If you aren’t sure what the quantum in quantum physics entails, I can provide a basic definition by offering a simple word picture.  It’s a matter of scale to describe the universe.  On the very big end is cosmology.  That’s what the giant earth-based observatories,  optical, radio telescopes, and space telescopes (like the Hubble, and the Kepler and the soon to be launched James Webb), look deep into space to better understand.  Cosmologists are interested in our  Milky Way galaxy, the galaxies in our neighborhood (we have a really BIG neighborhood) and further out from there to the whole universe.  Astronomers and astrophysicists study the cosmos, the biggest stuff out there.

Quantum physics studies the small end of the universe, smaller than atoms: subatomic particles with great names like quarks, Fermions, leptons and bosons, down to the smallest of the small, called a “bit” (The bit is still theoretical and is also considered a function of entropy. Click here for an explanation [Warning: Contains math formulas]).  They also study how those subatomic particles fit together and work to make the matter we can see.  And that is what a particle accelerator like the Large Hadron Collider at CERN straddling the border of France and Switzerland is designed to do.  Remember in The DaVinci Code, where the story starts in this giant underground building?  That’s CERN.  Particle physicists and quantum physicists study the small stuff and the forces that make them work.

What does this have to do with hope?  Everything, actually, but you’ll have to read just a bit more.

Quantum physics and cosmology have one goal in common.  They both want to figure out how the very large relates to the very small.  They want to discover how the smallest quantum bit is the building block for the universe (and maybe a whole bunch of other universes, too, but we’re not going there in this post).  This great quest is called the search for the Theory of Everything, or for short, The Big TOE.  Seriously.  Yeah, you can laugh.

Everything, however, is not scientifically measurable.  Life is one of those things.  I know we can create machines that can detect life and perhaps how much life exists a one place, but life as a phenomenon in the Universe is not measurable.

The whole notion is confounding, and has been the topic of debate among we humans well before the beginning of the Scientific Revolution with the publication in 1543 of Copernicus‘ manuscript, “On the Revolutions of the Celestial Spheres.”   For example, Aristarchus of Samos, who lived CA 310-230 BCE, published the first treatise on the heliocentric model of the solar system, On the Sizes and Distances of Sun and Moon, which was then suppressed by the Greek religious authorities of his time because it did not match their beliefs about their gods and life in the universe.  That has a familiar ring to it.

For Half a Millennium…

The past half a millennium, from Copernicus to the present, we have struggled to decide not just what the universe is made of, but what it is at all.  It is the driving force in cosmology and quantum physics.

For those of us who are people of faith, we have also struggled to decide not just what life is made of, but have equally struggled to assign meaning to a concept that seems pervasive to all humans that we label spirituality.  And the greater challenge has been to assign meaning to our religious beliefs and their long-held sacred foundations.   As our understanding of both the Universe and Life have changed (yes, I am deliberately capitalizing both words to communicate that in this context I am seeking to convey a sense of cosmic wholeness) our search for meaning has not gotten any easier.  Why after thousands of years of consciousness in this earthly setting, do we still not understand either?

Diarmuid O’Murcho, who has written extensively about defining a “quantum theology“, states,

The universe knows what it’s about.  That it does not make sense to us humans, that it often baffles us to extremes and undermines all our theories and expectations, is not a problem for the universe; it is a problem for us.  We, therefore, impetuously conclude that the universe does not care about us or about anything else…Instead of viewing it all as mindless, why not work with the idea that it is mindful? (Evolutionary Faith, p. 199).

Even as I write the words of O’Murcho’s quote, I admit they sound strange, foreign, even counter-intuitive to me.  My intellectual world has never regarded the universe as mindful.  Neither has my theological world.  Perhaps, though, that has been the problem, my problem: I have viewed these two worlds as separate, distinct, and although I may have been able to conceptualize them as meeting, like two pieces of plate glass. When pressed against each other they have a cohesiveness, but they are still to pieces of glass stuck together.  In the world of the quantum reality, there is no reason for that to always be so.  In fact, it may be that it is only rarely so, because in quantum theory, boundaries and internal existence are not bounded or exist in the way I perceive them.

Spirituality, Cosmology & the Quantum Conundrum…

I come, then, to my most difficult and confounding question.  If I can believe in a mindful God who created a quantum universe, why do I assume that this mindful Creator did not create a mindful Universe in the same way that humans (therefore, me) were created: In the image of God?

If I allow myself to just for a moment to adjust my reality to that perspective, I realize that I see, though in a glass darkly as St. Paul says when he talks about hope (not just love, 1 Co. 13:15), a reason for hope in a universe otherwise devoid and incapable of such mindfulness:

Life is the universe’s sole expression of hope, for without life the universe cannot contemplate its existence, and without hope the universe does not exist.

.

The First Image of the Universe as We Never Can See It, Because Our Eyes Cannot See in Microwave Wavelengths. Image: COBE, Goddard Space Flight Center, http://mather.gsfc.nasa.gov/cobe/science.html

Less of Our Light for More Star Light

Featured

I have participated in the GLOBE at Night program sponsored by the National Optical Astronomy Observatory (NOAO) for several years and continue to support it for two vitally important reasons:

As an amateur astronomer, light polluted skies wash out both the quality of what can be observed and can radically reduce the number of stars and other celestial objects that can be seen.  Light pollution affects all visual telescopes, no matter how large they are.  That is why the world’s greatest observatories are almost always built on very high peaks in very remote places far away from cities.

 

Light Pollution from the Large Binocular Telescope Observatory, Mt. Graham Int'l Obs., Arizona. Photo courtesy of Marco Pedani & University of Arizona

Every photon created by artificial light requires a human-manufactured source.  Measured in what is called “kiloWatt hours” (kWh) the electricity that is used to create unnecessary light (overlighting) is a nonrecoverable expense.  We waste billions of kiloWatt hours every year, costing us billions of dollars in the production and service used to create the light that wasn’t needed to begin with.  As we think about our energy production and the price paid to create the fuels to generate it (coal, oil, gas, hydro, nuclear–even solar, wind, wave, geothermal, and other cutting-edge energy-producing technologies require huge costs to meet our power demands), just the amount lost to light pollution cannot be justified from either a perspective of economic sustainability or the stewardship of the earth’s finite resources.

 

Large Binocular Telescope. Currently the world's largest optical telescope for total combined aperture, 16.8 meters, 662 inches (55.16 feet). Mt Graham Int'l Obs., Arizona. Photo courtesy of John Hill and LBTO, University of Arizona.

I invite you to join in the effort to change this one vital part of preserving our natural resources, not just those from the Earth but also those of the sky.  Please watch the short video, and then read the letter from Dr. Constance Walker, PhD*, Director of the GLOBE at Night campaign, and then follow the links to join in the fun of walking out your front door, looking up (I’ll bet you haven’t intentionally looked at the sky in a long time!), and with the very user-friendly GLOBE at Night instructions, instantly become an important participant in a global research project with such important implications.

Please note that the results for people living in the Northern Hemisphere must be submitted by April 4, 2011!

Note: Any connection between exposure to artificial light at night and cancer remains under investigation. The statement in the video represents that of the producers and not necessarily the views of Extreme Thinkover or GLOBE at Night.  See links below for more information**.

.

Join the 6th worldwide GLOBE at Night 2011 campaign:

March 22 – April 6

With half of the world’s population now living in cities, many urban dwellers have never experienced the wonderment of pristinely dark skies and maybe never will. This loss, caused by light pollution, is a concern on many fronts: safety, energy conservation, cost, health and effects on wildlife, as well as our ability to view the stars. Even though light pollution is a serious and growing global concern, it can be one of the easiest environmental problems you can address through responsible lighting on local levels.

Participation in the international star-hunting campaign, GLOBE at Night, helps to start the process of addressing the light pollution issue locally as well as globally. The campaign invites everyone all over the world to record the brightness of the night sky. The campaign runs from March 22 through April 4 in the Northern Hemisphere and March 24 through April 6 in the Southern Hemisphere. The campaign is easy and fun to do. First, you match the appearance of the constellation Leo or Crux with simple star maps of progressively fainter stars found.  Then you submit your measurements, including the date, time, and location of your comparison. After all the campaign’s observations are submitted, the project’s organizers release a map of light-pollution levels worldwide. Over the last six annual 2-week campaigns, volunteers from more than 100 nations contributed over 60,000 measurements, 30% of which came from last year’s campaign.

To learn the five easy steps to participate in the GLOBE at Night program, see the GLOBE at Night website. You can listen to this year’s 10-minute audio podcast on light pollution and GLOBE at Night. Or download a 45-minute powerpoint and accompanying audio. GLOBE at Night is also on Facebook and Twitter. (See the links at the end.)

The big news is that children and adults can submit their measurements in real time if they have a smart phone or tablet. To do this, you can use the web application. With smart phones and tablets, the location, date and time are put in automatically. And if you do not have a smart phone or tablet, there are user-friendly tools on the GLOBE at Night report page to find latitude and longitude.

For activities that have children explore what light pollution is, what its effects are on wildlife and how to prepare for participating in the GLOBE at Night campaign, see the Dark Skies Rangers activities. Monitoring our environment will allow us as citizen-scientists to identify and preserve the dark sky oases in cities and locate areas where light pollution is increasing. All it takes is a few minutes during the 2011 campaign to measure sky brightness and contribute those observations on-line. Help us exceed the 17,800 observations contributed last year. Your measurements will make a world of difference.

Primary Mirror, Gran Telescopio CANARIAS, world's largest single aperture, 10.4 meters, 664 inches (55.3 feet). Photo courtesy GTC & ORM, Canary Islands

Primary Mirror, Gran Telescopio CANARIAS, currently the world's largest single aperture optical telescope, 10.4 meters, 664 inches (55.3 feet). Photo courtesy GTC & ORM, Canary Islands

.

GLOBE at Night: http://www.globeatnight.org/

Star Maps: http://www.globeatnight.org/observe_magnitude.html

Submitting Measurements: http://www.globeatnight.org/report.html

Web App for Reporting: http://www.globeatnight.org/webapp/

Audio Podcast: http://365daysofastronomy.org/2011/03/07/march-7th-globe-at-night-2011/

Powerpoint: http://www.globeatnight.org/files/NSN_GaN_2011_slides.ppt

Accompanying Audio: http://www.globeatnight.org/files/NSN_GaN_2011_audio.mp3

Facebook: http://www.facebook.com/GLOBEatNight

Twitter: http://twitter.com/GLOBEatNight

Dark Skies Activities: http://www.darkskiesawareness.org/DarkSkiesRangers/

The Milky Way as you've probably never seen it under excellent dark skies. View inludes Sagittarius, Libra, Scorpius, Scutum & Ophiuchus from Cerro Tololo, Chile. Photo courtesy of W. Keel, Univ. of Alabama at Tuscaloosa.

*Constance Walker, PhD, director, GLOBE at Night campaign (www.globeatnight.org)
chair, International Dark-Sky Association Education Committee
chair, IYA2009 Dark Skies Awareness Cornerstone Project
member, Astronomical Society of the Pacific Board of Directors
associate scientist & senior science education specialist, NOAO
.

2010–The Year We Learn That Life Beyond Earth Exists?

Dr. David S. McKay, Astrobiologist. Photo: NASA

There’s a buzz out there amongst astrobiologists that before this year is out, Dr. David McKay and his research team are going to announce that they have definitively identified fossilized organisms in meteorites from Mars that have been collected on earth.

Martian microorganisms.  Martians.  Real Martians.  That bubble of perception that life exists only here on Earth will have been burst.

The next step, of course, will be to design Mars missions to determine if any of those organisms have survived Mars’ harsh and extreme history in an environment in which only extremophiles (as we now know flourish on Earth) could survive.

That those first missions will be robotic is certain.  The opportunity that a human will ever reach down and pick up a rock from the surface of Mars that potentially carries evidence of life living or fossilized in this century, at least under the sponsorship of NASA, appears increasingly doubtful in the current political and geo-centric environment.

Although we may be witness to the extinction of the hominid drive to discover the undiscovered, life confirmed beyond the delicate bubble of rock, water and air from which we were formed, literally changes the very quantumization of life itself.  It is a change that cannot be undone. From the present into the future, what it means to be living, what it means to be human will be different.  For life, as we’ve always known it, no longer requires Earth.

Martian Metorite NAKHLA 2058. Possible Fossilized Life. Microscopy Photo: NASA

There is more, however.  All technical considerations aside, if and when this announcement comes, the theological implications, as well as our geo-centric Christology, will no longer be the topic of idle speculation but confront us with a reality that demands a response to the world.

Since 1543, when Copernicus’ De revolutionibus orbium coelestium (On the Revolutions of the

Folio Pages Showing the Copernicus' Heliocentric Model. De Revolutionbus, 1543. Photo Courtesy fotosearch.com

Celestial Spheres), we have been attempting to unify our Christology with our Cosmology.  The results have been, in my opinion, at best, mixed.

Parable of the Sower, from the Plenarium or the Evangelical Book of the Year, 1516. Basel, Switzerland. Photo: Pitts Theology Library, Emory Univ.

The announcement of alien life, even microbial, requires a new conversation with a new set of rules.  It shall be a heady time, indeed.  Ours is the generation that broke the shackles of gravity and set off across the Solar System.  If, too, we are to be ones who confirm that life’s seed has been sown across the expanse of space like the Sower in one of Jesus’ parables, we have much work to do.

Here are three links:

http://spaceflightnow.com/news/n1001/09marslife/

http://cosmiclog.msnbc.msn.com/archive/2010/01/11/2169791.aspx

http://www.deccanherald.com/content/47114/proof-life-mars-come-year.html

Looking into the stars that seed the night will never be the same. Ever.